Compressible Flow credits Logo credits
Potto Home Contact Us

Potto Home

About Potto

Chapters:

  Content
  Introduction
  Sound
  Isentropic
  Shock
  Gravity
  Isothermal
  Fanno
  Rayleigh
  Tank
  Piston
  Oblique
  Prandtl-Meyer
  Hard copy
  Gas Dynamics Tables

Other things:
Other resources
Download Area
calculators

Other Resources

  FAQs
  Compare Other Books
  Articles

Potto Statistics

License

Feedback

next up previous index
Next: Combination of the Oblique Up: Prandtl-Meyer Function Previous: d'Alembert's Paradox   Index

Examples For Prandtl-Meyer Function


\begin{examl}
% latex2html id marker 28761A wall is included with $20.0^\circ$...
...on{The schematic of Example \ref{pm:ex:simpleExample}}
\end{figure}\end{examl}

Solution

First the initial Mach number has to calculated (the initial speed of sound).

$\displaystyle a= \sqrt{kRT} = \sqrt{1.4*287*293} = 343.1 m/sec
$

The Mach number is then

$\displaystyle M = {450 \over 343.1} = 1.31
$

This Mach number associated with

$ \rule[-0.1in]{0.pt}{0.3 in}\mathbf{M} $ $ \mathbf{\nu} $ $ \mathbf{P \over P_0} $ $ \mathbf{T \over T_0} $ $ \mathbf{\rho \over \rho_0} $ $ \mathbf{\mu } $
1.3100 6.4449 0.35603 0.74448 0.47822 52.6434
<>


The ``new'' angle should be

$\displaystyle \nu_2 = 6.4449 + 20 = 26.4449^\circ
$

and results in

$ \rule[-0.1in]{0.pt}{0.3 in}\mathbf{M} $ $ \mathbf{\nu} $ $ \mathbf{P \over P_0} $ $ \mathbf{T \over T_0} $ $ \mathbf{\rho \over \rho_0} $ $ \mathbf{\mu } $
2.0024 26.4449 0.12734 0.55497 0.22944 63.4620
<>


Note that $ {P_0}_1 = {P_0}_2$

$\displaystyle {P_2 \over P_1} = { {P_0}_1 \over P_1} { P_2 \over {P_0}_2 }
= {0.12734 \over 0.35603} = 0.35766
$

The ``new'' width can be calculated from the mass conservation equation.

$\displaystyle \rho_1 x_1 M_1 c_1 =
\rho_2 x_2 M_2 c_2 \Longrightarrow x_2 = x_1 {\rho_1 \over \rho_2 }
{M_1 \over M_2} \sqrt{T_1 \over T_2}
$

$\displaystyle x_2 =
0.1 \times {0.47822 \over 0.22944}
\times {1.31\over 2.0024} \sqrt{0.74448 \over 0.55497}
= 0.1579 [m]
$

Note that the compression ``fan'' stream lines are not known and their function can be obtained either by the numerical method of going over small angle increments. The other alternative is using the exact solution14.1. The expansion ``fan'' angle changes in the Mach angle between the two sides of the bend

$\displaystyle \hbox{fan angle} = 63.4 + 20.0 - 52.6 = 30.8^\circ
$


Reverse the example, and this time the pressure on both sides are given and the angle has to be obtained14.2.
\begin{examl}
% latex2html id marker 28838Gas with $k=1.67$ flows over bend (...
...d{figure}Compute the Mach number after the bend, and the bend angle.
\end{examl}
Solution

The Mach number is determined by satisfying the condition that the pressure downstream are Mach the given one. The relative pressure downstream can be calculated by the relationship

$\displaystyle {P_2 \over {P_0}_2} = {P_2 \over P_1} {P_1 \over {P_0}_1}
= { 1\over 1.2}\times{ 0.31424 } = 0.2619
$

$ \rule[-0.1in]{0.pt}{0.3 in}\mathbf{M} $ $ \mathbf{\nu} $ $ \mathbf{P \over P_0} $ $ \mathbf{T \over T_0} $ $ \mathbf{\rho \over \rho_0} $ $ \mathbf{\mu } $
1.4000 7.7720 0.28418 0.60365 0.47077 54.4623
<>


With this pressure ratio, $ \bar{P} = 0.2619$ , require either locking in the table or using the enclosed program is required.

$ \rule[-0.1in]{0.pt}{0.3 in}\mathbf{M} $ $ \mathbf{\nu} $ $ \mathbf{P \over P_0} $ $ \mathbf{T \over T_0} $ $ \mathbf{\rho \over \rho_0} $ $ \mathbf{\mu } $
1.4576 9.1719 0.26190 0.58419 0.44831 55.5479
<>


For the rest of the calculation the initial conditions are used. The Mach number after the bend is $ M= 1.4576$ . It should be noted that specific heat isn't $ k=1.4$ but $ k=1.67$ . The bend angle is

$\displaystyle \Delta\nu = 9.1719 - 7.7720 \sim 1.4^\circ
$

$\displaystyle \Delta\mu = 55.5479 - 54.4623 = 1.0^\circ
$



next up previous index
Next: Combination of the Oblique Up: Prandtl-Meyer Function Previous: d'Alembert's Paradox   Index
Created by:Genick Bar-Meir, Ph.D.
On: 2007-11-21