Compressible Flow credits Logo credits
Potto Home Contact Us

Potto Home

About Potto

Chapters:

  Content
  Introduction
  Sound
  Isentropic
  Shock
  Gravity
  Isothermal
  Fanno
  Rayleigh
  Tank
  Piston
  Oblique
  Prandtl-Meyer
  Hard copy
  Gas Dynamics Tables

Other things:
Other resources
Download Area
calculators

Other Resources

  FAQs
  Compare Other Books
  Articles

Potto Statistics

License

Feedback

next up previous index
Next: Governing Equation Up: Rayleigh Flow Previous: Rayleigh Flow   Index

Introduction

The third simple model for one-dimensional flow with constant heat transfer for frictionless flow. This flow is referred in the literature as Rayleigh Flow (see historical notes). This flow is another extreme case in which the friction effect is neglected because their relative effect is much smaller than the heat transfer effect. While the isothermal flow model has heat transfer and friction, the main assumption was that relative length is enables significant heat transfer to occur between the surroundings and tube. In contrast, the heat transfer in Rayleigh flow occurs between unknown temperature and the tube and the heat flux is maintained constant. As before, a simple model is built around the assumption of constant properties (poorer prediction to case where chemical reaction take a place).

This model is used to roughly predict the conditions which occur mostly in situations involving chemical reaction. In analysis of the flow, one has to be aware that properties do change significantly for a large range of temperatures. Yet, for smaller range of temperatures and lengths the calculations are more accurate. Nevertheless, the main characteristic of the flow such as a choking condition etc. is encapsulated in this model.

The basic physics of the flow revolves around the fact that the gas is highly compressible. The density changes through the heat transfer (temperature change). Contrary to Fanno flow in which the resistance always oppose the flow direction, Rayleigh flow, also, the cooling can be applied. The flow velocity acceleration change the direction when the cooling is applied.


next up previous index
Next: Governing Equation Up: Rayleigh Flow Previous: Rayleigh Flow   Index
Created by:Genick Bar-Meir, Ph.D.
On: 2007-11-21