Compressible Flow credits Logo credits
Potto Home Contact Us

Potto Home

About Potto

Chapters:

  Content
  Introduction
  Sound
  Isentropic
  Shock
  Gravity
  Isothermal
  Fanno
  Rayleigh
  Tank
  Piston
  Oblique
  Prandtl-Meyer
  Hard copy
  Gas Dynamics Tables

Other things:
Other resources
Download Area
calculators

Other Resources

  FAQs
  Compare Other Books
  Articles

Potto Statistics

License

Feedback

next up previous index
Next: Nozzle Flow With External Up: Normal Shock in Variable Previous: Nozzle efficiency   Index


Diffuser Efficiency

Figure: Description to clarify the definition of diffuser efficiency
\begin{figure}\centerline{\includegraphics {cont/shockVariable/diffuserDiagram}}
\end{figure}
The efficiency of the diffuser is defined as the ratio of the enthalpy change that occurred between the entrance to exit stagnation pressure to the kinetic energy.
For perfect gas equation (6.6) can be converted to
And further expanding equation (6.7) results in

\begin{examl}
\index{supersonic tunnel}
A wind tunnel combined from a nozzle and...
....4$ can be assumed.
Assume that a shock occurs in the test section.
\end{examl}
Figure: Schematic of a supersonic tunnel in a continuous region (and also for example (6.3)
\begin{figure}\centerline{\includegraphics
{cont/shockVariable/superSonicTunnel}}
\end{figure}
Solution

The condition at $ M=3$ is summarized in following table


$ \rule[-0.1in]{0.pt}{0.3 in}\mathbf{M} $ $ \mathbf{T \over T_0} $ $ \mathbf{\rho \over \rho_0} $ $ \mathbf{A \over A^{\star}} $ $ \mathbf{P \over P_0} $ $ \mathbf{A\times P \over A^{*} \times P_0}$ $ \mathbf{F \over F^{*}} $
3.0000 0.35714 0.07623 4.2346 0.02722 0.11528 0.65326
<>


The nozzle area can be calculated by

$\displaystyle {A^{*}}_n = {A^{\star} \over A} A = 0.02/4.2346 = 0.0047[m^2]
$

In this case, $ P_0 A^{*}$ is constant (constant mass flow). First the stagnation behind the shock will be

$ \rule[-0.1in]{0.pt}{0.3 in}\mathbf{M_x} $ $ \mathbf{M_y} $ $ \mathbf{T_y \over T_x} $ $ \mathbf{\rho_y \over \rho_x} $ $ \mathbf{P_y \over P_x} $ $ \mathbf{{P_0}_y \over {P_0}_x } $
3.0000 0.47519 2.6790 3.8571 10.3333 0.32834
<>


$\displaystyle {A^{*}}_{d} = {{P_0}_n \over {P_0}_d} {A^{*}}_{n}
\sim {1 \over 0.32834} 0.0047 \sim 0.0143[m^3]
$



\begin{examl}
A shock is moving at 200 [m/sec] in
pipe with gas with $k=1.3$, p...
...nd temperature of
$350K$. Calculate the conditions after the shock.
\end{examl}
Solution

This is a case of completely and suddenly open valve with the shock velocity, temperature and pressure ``upstream'' known. In this case Potto-GDC provides the following table

$ \rule[-0.1in]{0.pt}{0.3 in}\mathbf{M_x} $ $ \mathbf{M_y} $ $ \mathbf{{M_x}^{'}} $ $ \mathbf{{M_y}^{'}} $ $ \mathbf{{T_y} \over {T_x} } $ $ \mathbf{{P_y} \over {P_x}} $ $ \mathbf{{P_0}_y \over {P_0}_x } $
5.5346 0.37554 0.0 1.989 5.479 34.50 0.021717
<>


The calculations were carried as following: First calculate the $ M_x$ as

$\displaystyle Mx = U_s / \sqrt{k * 287.* T_x}
$

Then calculate the $ M_y$ by using Potto-GDC or utilize the Tables. For example Potto-GDC (this code was produce by the program)

$ \rule[-0.1in]{0.pt}{0.3 in}\mathbf{M_x} $ $ \mathbf{M_y} $ $ \mathbf{T_y \over T_x} $ $ \mathbf{\rho_y \over \rho_x} $ $ \mathbf{P_y \over P_x} $ $ \mathbf{{P_0}_y \over {P_0}_x } $
5.5346 0.37554 5.4789 6.2963 34.4968 0.02172
<>


The calculation of the temperature and pressure ratio also can be obtain by the same manner. The ``downstream'' shock number is

$\displaystyle M_{sy} = {U_s \over \sqrt{k * 287.* T_x *
\left( T_y \over T_x \right)}}
\sim 2.09668
$

Finally utilizing the equation to calculate the following

$\displaystyle {M_y}^{'} = M_{sy} - M_y = 2.09668 - 0.41087 \sim 1.989
$



\begin{examl}
An inventor interested in a design of tube and piston so that the
...
....
If the steady state is achieved, what will be the piston
velocity?
\end{examl}
Solution

This is an open valve case in which the pressure ratio is given. For this pressure ratio of $ P_y/P_x= 2$ the following table can be obtained or by using Potto-GDC
$ \rule[-0.1in]{0.pt}{0.3 in}\mathbf{M_x} $ $ \mathbf{M_y} $ $ \mathbf{T_y \over T_x} $ $ \mathbf{\rho_y \over \rho_x} $ $ \mathbf{P_y \over P_x} $ $ \mathbf{{P_0}_y \over {P_0}_x } $
1.3628 0.75593 1.2308 1.6250 2.0000 0.96697
<>

The temperature ratio and the Mach numbers for the velocity of the air (and the piston) can be calculated. The temperature at ``downstream'' (close to the piston) is

$\displaystyle T_y = T_x {T_y \over T_x} = 300 \times
1.2308 = 369.24[\celsius]
$

The velocity of the piston is then

$\displaystyle U_y = M_y * c_y = 0.75593 * \sqrt{1.4*287* 369.24}
\sim 291.16 [m/sec]
$



\begin{examl}
A flow of gas is brought into a sudden stop.
The mass flow rate of...
...=1.091$ (Butane?).
Calculate the conditions behind the shock wave.
\end{examl}
Solution

This is the case of a close valve in which mass flow rate with the area given. Thus, the ``upstream'' Mach is given.

$\displaystyle {U_x}^{'} = {\dot{m} \over \rho A} =
{\dot{m} R T \over P A} =
{ 2 \times 287 \times 350 \over 200000 \times 0.002}
\sim 502.25 [m/sec]
$

Thus the static Mach number, $ {M_x}^{'}$ is

$\displaystyle {M_x}^{'} = { {U_x}^{'} \over c_x}
= { 502.25 \over \sqrt{ 1.091 \times 143 \times 350} }
\sim 2.15
$

With this value for the Mach number Potto-GDC provides

$ \rule[-0.1in]{0.pt}{0.3 in}\mathbf{M_x} $ $ \mathbf{M_y} $ $ \mathbf{{M_x}^{'}} $ $ \mathbf{{M_y}^{'}} $ $ \mathbf{{T_y} \over {T_x} } $ $ \mathbf{{P_y} \over {P_x}} $ $ \mathbf{{P_0}_y \over {P_0}_x } $
2.9222 0.47996 2.1500 0.0 2.589 9.796 0.35101
<>

This table was obtained by using the procedure described in this book. The iteration of the procedure are

$ \rule[-0.1in]{0.pt}{0.3 in}\mathbf{i} $ $ \mathbf{M_x} $ $ \mathbf{M_y} $ $ \mathbf{{T_y} \over {T_x} } $ $ \mathbf{{P_y} \over {P_x}} $ $ \mathbf{{M_y}^{'}} $
0 3.1500 0.46689 2.8598 11.4096 0.0
1 2.940 0.47886 2.609 9.914 0.0
2 2.923 0.47988 2.590 9.804 0.0
3 2.922 0.47995 2.589 9.796 0.0
4 2.922 0.47996 2.589 9.796 0.0
5 2.922 0.47996 2.589 9.796 0.0
<>




next up previous index
Next: Nozzle Flow With External Up: Normal Shock in Variable Previous: Nozzle efficiency   Index
Created by:Genick Bar-Meir, Ph.D.
On: 2007-11-21